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An extended form of the correspondence principle is employed Lo determine directly the quasi-static
deformation of viscoelastic earth models by mass loads applied to the surface. The stress-strain relation
emploved is that appropriate to a Maxwell medium. Most emphasis is placed on the discussion of
spherically stratified self-gravitating earth models. although some consideration is given to the uniform
elastic haif space and to the uniform viscous sphere, since they determine certain limiting behaviors that
are useful for interpretation and proper normalization of the general problem. Laplace transform domain
solutions are obtained in the form of *s spectra’ of a set ol viscoelastic Love numbers. These Love numbers
are defined in analogy with the equivalent elastic problem. An efficient technique is described for the in-
version of these s spectra, and this technique is employed Lo produce sets ol time dependent Love numbers
for a series of illustrative earth models. These sets of time dependent Love numbers are combined to
produce Green functions for the surface mass load boundary value problem. Through these impulse
response functions, which are obtained for radial displacement, gravity unomaly. and Ult. 4 brief discus-
sion is given of the approach to isostatic equilibrium. The response‘ol the earth to an arbitrary quasi-static
surface loading may be determined by evaluating a space-lime convolution integral over the loaded region

using these response functions.
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1. INTRODUCTION

Observations of slow changes in the earth’s shape that occur
in response to shifting surface loads provide important infor-
mation concerning the rheological properties of the planetary
interior. The inference of internal properties on the basis of
such external observations is a good example of the kind of
geophysical inverse problem that has been treated extensively
by Backus and Gilbert [1967, 1968, 1970]. The solution of such
inverse problems depends upon and is intrinsically limited by a
physical model of the observed phenomenon. If there exist two
different physical models both of which are capable of
reproducing the existing observations (within experimental
error), the inverse theory certainly cannot be expected to dis-
tinguish between them. If such a distinction is to be achieved,
the data set must be extended, or the experimental error
reduced, or both. This predicament, or at least a variant of it,
may currently be the case with regard to the interpretation of
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the surface relaxation processes that are observed in the
geological record to have accompanied Pleistocene deglacia-
tion.

In the most widely accepted model for this postglacial uplift
or rebound phenomenon the earth is taken to be a chemically
homogeneous Newtonian viscous fluid or at most a linear
viscoelastic solid. Such models have most recently been
employed to interpret the observations by Scheidegger [1957.
1963] and McConnell [1963, 1965, 1968a, b]. These models are
taken to have a single free parameter, the “equivalent’ Newto-
nian viscosity, and this parameter is assumed to be a function
of radius only (in fact, virtually all such analyses have been
concerned with plane earth models). Other parameters of the
model (e.g., density, P and S wave velocities, etc.) are taken to
be fixed by independent observations (e.g., free oscillation
frequencies, body wave arrivals, etc.). Such subsurface models
to explain the observed relaxation processes were first in-
troduced by Haskell [1933, 1936, 1937] but had been studied
earlier in a different context by Darwin [1879].

These fluid models of the observed rebound have recently
been questioned by Gjevik [1972, 1973], who shows that if the
subsurface thermal environment were favorable, then the sur-
face could adjust to changes in the applied load by the radial
migration of subsurface phase boundaries. Although
‘favorable’ conditions turn out to be a rather stringent restric-
tion on this mechanism, it is also potentially capable of ex-
plaining the observed relaxation times. If the viscous fluid
models were capable of adequately reproducing the obser-
vations, then the stringency of the required conditions for the
phase transition process would be sufficient to eliminate the
necessity of its consideration as an alternative, although it
might nevertheless be desirable to incorporate it into a more
general model. However, according to some authors [Jeffreys,
1940, 1970: Magnitsky and Kalashnikova, 1970; Innes and
Weston, 1966] there is evidence of a distinct lack of correlation
between the gravity anomaly and the magnitude of the vertical
motion in regions such as Fennoscandia and Hudson Bay,
which were centers for the largest Pleistocene ice sheets [Pater-
son, 1972). More recent gravity data [Gaposchkin and
Lambeck, 1971; Kaula, 1972] do not appear to support this
lack of correlation. If gravity were the only driving force for
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the relaxation of the surface deformation, as it is assumed to
be in the viscous fluid models, then it would be expected that
such correlation would be close. The quantitative extent Lo
which observed gravity anomalies differ from those that would
be predicted by a fluid or linear viscoelastic model has unfor-
tunately never properly been assessed. The purpose of this arti-
cle is to explore a simple formalism within which it will subse-
quently be possible to provide the necessary assessment.
The basis for criticizing such estimates as have been
produced of the difference between observed and predicted
gravity anomalies is connected with the essentially global
nature of the processes accompanying Pleistocene deglacia-
tion. The main characteristic of the time dependent surface
mass loads that result in readjustments of the earth’s shape is
that they correspond to load redistribution rather than simply
to load removal. Not only did the glaciers melt, and the sur-
face load thereby disappear from the region that it formerly
occupied, but the ocean basins were also filled in the process. In
the case of the Fennoscandian ice sheet, which had its energy
(in the sense of a wave number spectrum of its thickness) con-
centrated near Legendre degree 15, one might expect that a
plane earth approximation to the local uplift phenomenon
(such as the approximations employed by McConnell [1965])
would be sufficient. However, simultaneously with the melting
of the Fennoscandian glacier the so-called Laurentide ice sheet

was also disappearing. This glacier, which covered all of

Canada and parts of the United States, had a mean wavelength
corresponding to a Legendre degree near 5. Consequently, its
melting resulted in the application of a substantial load to the
ocean basins. This load will clearly affect the relaxation
process in Fennoscandia, but the magnitude of the effect has
vet to be assessed. Cathles’ [1971] analysis of the global
problem has been the only attempt to provide a self-consistent
treatment of the postglacial uplift problem in spherical
geometry. If the fluid models of the uplift phenomenon are Lo
be completely assessed, their theoretical framework must be
cast into such a form that direct and unambiguous com-
parisons can be made with observation.

As was implied above, the impetus for extensive reanalysis
of the relaxation process within the context of a fluid model
derives primarily from the desire to identify the relaxation
mechanism correctly. This can be done only by subjecting the
currently accepted paradigm to stringent test. If the fluid
model can be made to explain the data (within observational
accuracy), then by implication the mantle should be taken to
behave effectively as a Newtonian viscous fluid for defor-
mations on time scales as short as 10,000 years. If it is correct,

this implication has direct bearing upon the phenomena of

continental drift and sea floor spreading, since the driving
mechanism for these motions is currently believed to be
associated with some form of thermal convection in the
planetary mantle [Tozer, 1965; Peltier, 1972: Richter, 1973;
McKenzie et al., 1974] and since this phenomenon is strongly
dependent upon fluid viscosity, a parameter determined by the
analysis of uplift data. Since no attempt will be made in the
present paper to infer a mantle viscosity profile and since this
parameter is a fundamental ingredient in the viscoelastic
models of the earth that are to be discussed, some rational
basis is required for the utilization of the viscosity profiles
selected for analysis in section 7.

Until the paper of Goldreich and Toomre [1969] it had com-
monly been believed that the viscosity of the lower mantle was
considerably higher than the viscosity of the upper mantle. This
belief was associated with the previously held beliel [Munk and
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MacDonald, 1960; MacDonald, 1966] that there was
‘something special’ about the apparently excessive equatorial
bulge of the earth and that this something was to be considered
a fossil rotational bulge. Assuming an average value for the
deceleration of the earth’s rotation, Munk and MacDonald
calculated that the equatorial bulge was equal in magnitude to
the value that it should have had 9.5 X 10° years ago.
MacDonald [1966] subsequently interpreted this value as im-
plying a mantle viscosity of 7.9 X 10* P. McKenzie [1966,
1967, 1968] came to the same conclusion by a different route
and calculated a viscosity of 2.4 X 10*" P for the lower mantle.

All of these arguments were based upon the assumption that
the gravitational energy in C,° was larger than it was in the
other spherical harmonic coefficients and that this was a
significant characteristic of the earth. Goldreich and Toomre
[1969] pointed out that the dominance of C,° was due to a bias
in the spherical harmonic description that overemphasized the
energy in equatorial anomalies by a factor of 3. O'Connell
[1971] gives sample computations that illustrate the effect on
the spectrum of simple rotations of the coordinate axes. There
is ‘nothing special” about the equatorial potential bulge, and
the earth is to be considered gravitationally triaxial. In con-
junction with their polar-wandering model, Goldreich and
Toomre [1969] then proceed to deduce a lower-mantle
viscosity that is ‘probably less than 6 X 10* poise and certainly
less than 6 X 10* poise,” i.e., less by about 2 orders of
magnitude than the value obtained by McKenzie.

An independent estimate of the viscosity of the lower mantle
has been obtained by Dicke [1966, 1969] by making use of an-
cient eclipse records that allow extraction of the nontidal com-
ponent of the acceleration of the earth’s rotation. Combining
these data with the assumption that the nontidal acceleration
was produced by the filling of the oceans after deglaciation,
assuming that the oceans are pure order 2 harmonic, and using
an observed effective relaxation time for that harmonic (see
original papers), Dicke calculated a value of about 10* P for
the viscosity of the lower mantle. After calculation on the full
problem, Cathles [1971] suggested that this value should be
adjusted to 3 X 10* P. Following a similar line of attack,
O'Connell [1971] obtains a further estimate of 6 X 10* P,
which is in accord with the last given value. His analysis is
questionable, however, as will be discussed further in section 8,

From the above discussion it should be clear that there
are several independent means by which the viscosity of the
mantle may be inferred from surface observations. However,
except for inferences based upon direct observations of the
surface rebound after deglaciation, each of the methods dis-
cussed above carries with it the possibility of conceptual error
as well as the usual numerical errors that are attendant upon
any physical observation. A direct test of the fluid model
should therefore involve a test of its detailed compatibility
with the rebound observations. This paper is concerned with
the first stage of such a test, namely, a description in theory of
the way in which a general viscoelastic (Maxwell) model
responds 1o a time variable surface mass load.

In order to make this discussion as generally applicable to
the earth as possible it will be restricted to an analysis of the
impulse response of the system. No attempt will be made to
describe the response to a particular load. Given its impulse
response, the response of a system to an arbitrary applied load
can be obtained by evaluating a convolution integral over the
surface of the sphere both in space and in time. This Green
function approach has proved to be particularly successful in
the analysis of the surface-loading problem for an elastic earth
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model [Farrell, 1972] and has been employed in a discussion of
ocean lidal loading [Farrell, 1973]. The method was in-
troduced originally by Longman [1962, 1963] in the same con-
text as was employed by Farrell, but Longman was only able
to compute the Green functions at distances sufficiently far
from the source. The necessity for the introduction of this
technique into the present context, where the problem is to
describe the relaxation process associated with deglaciation,
may not be immediately obvious. Normally, in seeking the
response of a linear system to a forcing that has its energy con-
centrated in the low-degree spherical harmonics it is most
efficient to evaluate the response in the wave number domain
by multiplying the Love numbers (in analogy with the elastic
problem) by the corresponding coefficients in the spherical
harmonic expansion of the load. Examples of the application
of this technique to the elastic problem are given by Pertsev
(1966, 1970] and to a reduced viscoelastic problem by Cathles
[1971]. The deglaciation problem is complicated, however, by
several characteristics that suggest an alternative approach.
First, the load has an extremely complicated temporal and
spatial history; this fact is particularly true of the vast Lauren-
tide ice sheet [Paterson, 1972]. Even more to the point in the
case of the Laurentide region is a difficulty that would appear
in attempting to compare observational data with predictions
of the model. The data set is simply too sparse for a reliable
spherical harmonic decomposition of it to be constructed
[Walcott, 1972]. Both of these factors and others to be dis-
cussed in the concluding section suggest a Green function ap-
proach. -

For the viscoelastic problem construction of Green functions
would appear to be much more difficult than is found to be the
case for the equivalent elastic system. This may be anticipated,
if for no other reason, because the required Green function is
time as well as space dependent. However, the anticipated in-
crease in difficulty turns out to be spurious when the Maxwell
constitutive relations are employed. For a Maxwell medium
the correspondence principle is valid (true for any linear
viscoelastic material). This principle says that the time depen-
dent behavior of such a material may be obtained in the
Laplace transform domain simply by solving an equivalent
elastic problem for several values of the Laplace transform
variables 5. The time dependent behavior is then obtained by
inverting the s spectrum so obtained. This is the point at which
the analysis of such problems usually encounters difficulty.
For the deglaciation Green functions, however, it turns out
that numerical inversion of the transforms can be achieved in a
relatively straightforward and elegant fashion. This approach
to the construction of time histories and the formation of time
dependent Green functions for vertical uplift, gravity
anomaly, and tilt are the unique features of this review and ex-
tension of fluid theory describing the response of the earth to
time dependent surface mass loads.

2. RESPONSE MECHANISM

The applicability of linear viscoelastic models to the descrip-
tion of relaxation processes in the mantle depends upon the
physical details of the mechanism by which the system deforms

under an applied stress. It is well known that the mode of

material deformation depends not only upon the temperature
and pressure conditions of the material but also upon the time
scale over which the stress is applied. For example, although
the terrestrial mantle must possess nonzero rigidity on short
time scales (<4 hours) on account of its seismically observed
ability to transmit elastic shear waves, on time scales of the
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order of the earth’s age (10° years) its behavior is well
characterized by that of a viscous fluid (a material with zero
rigidity). This follows from the fact that the theory of a
rotating liquid spheroid [Chandrasekhar, 1970] is found to
provide an accurate explanation of the oblate figure ol the
earth. In attempting to model the relaxation processes
associated with deglaciation we are obliged to consider the
response mechanism that is appropriate to deformation time
scales of ‘intermediate’ length!

Materials that are at sufficiently high temperatures respond
to suddenly applied stress with an immediate elastic deforma-
tion followed by a transient anelastic deformation called
‘creep.’ After a sufficiently long time the rate of deformation
tends toward a constant value. This steady state creep controls
the deformation in most high-temperature creep experiments
on metals and ceramics. The pertinent experiments in this field
and their geophysical implications have been reviewed by
McKenzie [1968].

It is usually argued in analogy with these experiments that
such steady state creep controls the phenomena of postglacial
uplift of the crust and the associated motions in the mantle.
The same argument is employed to justify the use of Newlo-
nian fluid models of the thermal convection process supposed
to be the driving mechanism for continental drift and sea floor
spreading. Allowance is sometimes made for the possibility in
the postglacial uplift problem that the response may have a
significant elastic component. This has given rise to the in-
troduction of linear viscoelastic models in this context, but
such models have not been thoroughly discussed. The subject
is a controversial one. Weertman [1970] has discussed the
geophysical importance of experiment and theory for creep in
pure materials and has shown that the Newtonian viscous fluid
model serves to put a lower limit on the deformation rate un-
der a given stress within the earth.

The equations of motion that are appropriate in describing
the steady state deformation of a given medium clearly depend
upon the creep mechanism. The two principal mechanisms
found to be important in describing the experiments on
ceramics and metals are diffusion creep [Herring, 1950] and
dislocation climb [Weertman, 1955). For diffusion creep there
exists a linear relation between stress and strain, and so the
deformation may be described through a viscosity », where

v = (kTa*/aDRQ) exp [(E + pVa)/kT] (1)

and where k is Boltzmann's constant, 7 the absolute
temperature, V, the activation volume, a the mean grain
radius, E the activation energy for self-diffusion, p the
pressure, {} the atomic volume, and « a constant. In this case
the equations of motion are easily derived and are the
equations of viscous hydrodynamics with the temperature and
pressure dependent viscosity (1).

It is usually assumed that diffusion is the creep-limiting
process, for then it is appropriate to describe the relaxation of
surface deformations following deglaciation in terms of a
linear Stokesian viscous fluid model. This assumption is
justifiable only if the internal stresses in the material are
sufficiently small; this is a hypothesis that is not subject to
direct refutation. It does not follow from the ability of a
viscous fluid model to reproduce the observations that the
creep-limiting process is diffusion. To verify this hypothesis, it
would also have to be shown that nonlinear creep laws were in-
capable of producing similar agreement with the data.

In general, the contribution of the immediate elastic defor-
mation to the total response must be included along with the
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viscous time dependent part. The simplest framework within
which these two effects can be treated simultaneously is one in
which the material is described by the constitutive relations ap-
propriate to a Maxwell solid [Eringen, 1967]. For a Maxwell
body with no initial stress the stress-strain relation is given by

(2)

where 7, and ey, are the stress tensor and the strain tensor,
respectively; the dot denotes time differentiation; dy, is the unit
diagonal tensor; u and A are Lamé’s constants; and » is the
viscosity. No previous study of the rebound problem has made
full use of the Maxwell constitutive relation (2). The explicit
dependence of » upon the thermodynamic variables (p, T) has
always been ignored; variations in » are then incorporated as a
pure space dependence by taking » = »(r). The dependence of v
upon p and T in (1) is then invoked to imply that »(r) must be a
rapidly increasing function of depth and thereby to give
credence to the old idea that the lower mantle must have a very
high viscosity. This implication that diffusion creep would de-
mand a large radial variation in viscosity is apparently
erroneous (R. Smoluchowksi, personal communication, 1973)
(see also the paper by Weertman [1970], whose analysis of the
creep strength of the mantle from the point of view of solid
state physics led to an estimated effective lower-mantle viscosity
of 4 X 10 P). The point of view adopted here is that the
Lamé parameters in (2) are considered to be determined ex-
actly by body wave and free oscillation data, so that the post-
glacial uplift observations refer directly to the »(r) profile.

The assumption that » varies only as a function of radius is
clearly violated by the earth. The various scales of motion in-
volved in the mantle general circulation, from the small-scale
‘plumes’ to the macroscale motions driving the lithospheric
plates, are certainly characterized by lateral temperature
variations. If the creep process is a thermally activated one,
then these circulation systems must give rise to lateral
variations of effective viscosity. The simplest example of a
viscosity that is temperature dependent follows from the
assumption of diffusion creep. In this case the dependence of »
on temperature is described through (1). If it were possible
either by divine intuition or some other more prosaic means
to determine precisely what are the lateral variations in
planetary viscosity, then it would be possible to construct a
spherical finite element model of the rebound into which this
effect is incorporated. Numerical models of the mantle general
circulation including the temperature dependence of viscosity
will prove useful in providing initial estimates of the lateral
variation of this quantity. For the present purposes we will ig-
nore the possibility that such effects may be important, but in
doing so we will point out that the two main centers of glacia-
tion were located on stable platforms well removed from
known centers of tectonic activity.

This model of the response mechanism, which consists of an
immediate elastic plus a slow viscous reaction to load removal,
ignores the possibility that effects that are entirely ther-
modynamic in origin might influence the relaxation process.
For instance, the changing topography of the base of the
lithosphere could interact with the mantle convection system.
Such an interaction is unlikely to be significant, since the time
scales of the two phenomena are so widely different. A more
likely thermodynamic effect has been discussed by Gjevik
[1972, 1973] and is dependent upon the fact [Ringwood, 1970,
1972; Ringwood und Major, 1970] that the mantle is chemically
inhomogeneous.

Direct evidence for the existence of mantle phase transitions

T+ (/)T — YTbn) = 2pén + ANewbu
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has in the past several years been provided by seismology.
These phase transitions are marked by two ‘strong’ discon-
tinuities in compression wave velocity at depths of 400 and 650
km and a possible third transition associated with a weak dis-
continuity near a depth of 1050 km. Recent advances in high-
pressure technology [Ringwood, 1972] have enabled a cor-
respondence to be drawn between the discontinuity at 400 km
and the transformation of the mineral olivine to a more closely
packed B spinel structure [Ringwood, 1970]. The ap-
proximately 230-kbar pressure at 650 km is currently inaccessi-
ble to direct experiment, but indirect methods (germinate
analogs) have suggested that the f§ spinel phase should
transform to a strontium-plumbate structure at pressures in
this range.

The importance of these phase transitions in the mantle con-
vection problem has been discussed by Schubert and Turcotte
[1971] and Peltier [1971, 1972] within the framework of the
linear stability theory by making use of a technique discussed
by Busse and Schubert [1971]. The principal result of these
calculations was the demonstration that the presence of the
phase transitions actually serves to decrease the stability of the
layer within the range of parameters that are likely to be
typical of mantle conditions.

Gjevik [1972, 1973] discusses the possible importance of
these phase transitions to the relaxation phenomenon that is
observed to accompany deglaciation [Walcots, 1972]. The
basic physical idea in this mechanism is that the phase transi-
tion must respond to a change in pressure at the earth’s sur-
face, since it takes place at fixed T, p conditions that are
described by the Clapeyron curve. Owing to the density
difference between the phases a motion must be induced in the
surface as well as in the phase transition boundary. Unfor-
tunately, the exact calculation of this effect is complicated,
since the equations are nonlinear and such approximate
solutions as have been obtained correspond to rather special
cases and are of questionable applicability to the mantle. The
most that can be said is that under the proper thermodynamic
conditions the one-dimensional models that have been
analyzed appear to be capable of giving relaxation times that
are of the correct order to explain the glacial rebound data.
Whether the mechanism is capable of explaining the observed
geographical characteristics of the rebound, e.g., the pe-
ripheral bulge and the fact that some areas peripheral to the
loaded region have undergone periods of emergence followed
by periods of submergence, is, however, another question.
These observations are consistent with the fluid model at least
on the basis of the work reported here.

A more detailed analysis of Gjevik’s mechanism would cer-
tainly be worthwhile. At the very least it must be said that the
way in which phase transitions have been incorporated into
previous rebound calculations as ‘nonadiabatic density
gradients’ [Cathles, 1971] may be misleading at best.

However, before rejecting the simple Maxwell model on ac-
count of its linearity, its failure to incorporate phase tran-
sitions correctly, or any other reason it should first be deter-
mined quantitatively to what extent it is incapable of providing
agreement with the observations.

3., CORRESPONDENCE PRINCIPLE

For a large class of problems in linear viscoelasticity the cor-
respondence principle can be used to calculate a time depen-
dent viscoelastic response from the solution to an ‘associated’
elastic problem. The basis for this rule is that with zero initial
conditions the Laplace or Fourier time-transformed
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viscoelastic field equations and boundary conditions are for-
mally identical with the equations for an elastic body of the
same geometry. Thus transformed solutions can be calculated
by standard elastic analysis and then inverted to obtain the
time dependent response. This principle was deduced by Lee
[1955] for isotropic media and later by Biot [1954, 1955b] for
anisotropic materials. It will be extended here to include the
case of nonzero initial stress. This is necessary in the context of
the present problem, since previous to the onset of deglacia-
tion the planet was of course prestressed hydrostatically. Biot
has indicated that the principle is also applicable to variational
methods of approximate elastic analysis. This fact has impor-
tant implications for the mantle viscosity inverse problem.
Furthermore, Lee observed that with ‘proportional loading’
(i.e., the space and time dependence of prescribed loads and
displacements appear as separate factors with a common time
factor) the spatial dependence of a transformed viscoelastic
solution is the same as that which occurs in a geometrically
similar elastic body if the spatial dependence of prescribed
quantities is the same for both problems. A practical implica-
tion of this latter point is that with proportional loading, a
transformed solution can be derived directly from an elastic
solution by replacing elastic constants by operational moduli
(compliances) and the time dependence of prescribed loading
and displacements by transformed quantities.

For a Maxwell body the stress-strain relation (2) applies. To
solve mechanical problems for which this relation is ap-
propriate, the first step is to represent the tensors for stress and
strain in terms of their Laplace transforms; thus (2) may be
written as

1
(s + ‘—;)r — 35 tuda = 2ust + Nsewda (3)
where the tilde denotes the Laplace transform and s is the
Laplace transform variable. Contracting the tensor relation (3)
gives

Far = (BN + 2u)ex (4)
and substituting this result back into (3) then gives
_ 2 _wpu/v) ) 2us
T = (7\ + 3G + a) 80 + G+ 4/% éx1 (5)
Thus
Te = A(S)ékkak{ + 2u(s)én (6)
where
_ A+ uk/y _
Als) = b K=X+ %
(7N
p(s) = us/(s + u/v)

Equation (6) has exactly the same form as the constitutive rela-
tion for a Hookean elastic solid, where the Lamé parameters
A(s) and p(s) are now functions of the Laplace transform
variable s. The correspondence principle assures us that if we
are willing to solve the equivalent elastic problem many times
for different values of the Laplace transform variable s, then
we will have constructed the Laplace transform of the time
dependent viscoelastic solutions that we are seeking.

It is important to recognize that elastic analysis can only be
used to calculate transformed solutions. The final step of in-
verting the transforms often proves to be extremely difficult if
standard exact or asymptotic methods are used. This has been
found to be particularly true (except for some elementary
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cases) when realistic material properties are employed. An ex-
ample of the complexity that arises with the use of actual
material properties can be seen in the paper by Muki and
Sternberg [1961]. These difficulties have led several authors
le.g., Lee and Rogers, 1961] to reformulate the problems in
terms of integral rather than differential equations, and in
some cases this approach led to a relatively simple numerical
scheme for calculating the time dependent solutions. However,
since we are here interested in constructing solutions for [ull
spherical sell-gravitating earth models with inhomogeneous
bulk properties, the integral equation approach appears to be
hopeless at the outset. We are obliged to reconsider ap-
proximate methods for inverting the transform. Although
many such methods have been proposed [Bellman et al., 1966],
I have found only one to be suitable to the particular problem
of interest here. This method is due to Schapery [1962] and is
discussed briefly in section 8.

4. BOUSSINESQ'S PROBLEM

Qur intention is to treat the viscoelastic rebound problem by
direct application of the correspondence principle. Since this
treatment involves the construction of solutions to an
equivalent set of elastic problems, the natural starting point
for this discussion is the consideration of an appropriate set of
such equivalent problems. The simplest such set is that con-
sidered by Boussinesq [1885] in his study of the response of a
nongravitating elastic half space to an applied surface
pressure. The main theoretical result was the determination of
the Green function for the associated boundary value
problem. This problem contains all of the essential ingredients
of the more general spherical, self-gravitating, viscoelastic
models without their associated numerical complexity.
Furthermore, since the half-space response and that for the
sphere converge at distances sufficiently near the point load
(when it is assumed that the elastic forces dominate the
gravitational forces in this range), the Boussinesq solution
provides a convenient standard against which the spherical
Green functions may be calibrated (see section 9).

a. Response of a homogeneous half space to a point
force. When inertial forces are neglected, the Laplace-
transformed displacement vector @ must satisfy the equivalent
elastic equilibrium equation throughout the medium. This
may be written as

oV(V - 0) —pVXVXia=0 (8)

where A(s) and u(s) are the equivalent Lamé parameters
defined in (7), a(s) = A(s) + 2u(s), and n(s) = A(s) + u(s). In
this section we follow the method of Farrell [1972], the only
difference being in the interpretation of the final solution (sec-
tion 4b). Suppose that the half space fills the region z < 0. We
seek a solution to (8) subject to the boundary condition that
the surface z = 0 is stress free everywhere except at the origin,
where it is subject to a point force. We assume that this point
force is applied to the surface only at time ¢t = 0. Since the
applied surface traction is a delta function in time, it must be
equal to a constant in the Laplace transform domain wherein
(8) is to be solved. By introducing a cylindrical coordinate
system (z, r, #) with basis vectors e,, €,, and e, the solution to
(8) may be represented as

U = iz, rje. + o(z, rje )

The 8 dependence clearly vanishes by symmetry. We represent
iz and 0 in terms of Fourier-Bessel transforms of order 0 and 1,
respectively, and denote by U and ¥ the components of the
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transformed displacement. Thus

dz, 7 = f 0, &) Jor)t dt
il (10)

Bz, r) = [0 Pz, &) 1@k dt

where £ is radial wave number. In (z, r, #) coordinates the
stress-strain relations are

o ai/dz + (\/r) 8/0r (r©)
F.. = ulob/9z 4 96lap)

The elements of the stress tensor 7;; may also be expressed in
terms of Fourier-Bessel transforms (7..(x, &), Tr.(z, £) of
order 0 and I, respectively.

Transforming (8) and introducing the transforms of the
stress-strain relation (11) give a coupled first-order system of
equations that may be solved subject to appropriate boundary
conditions on the surface z = 0. On this surface the tangential
stress must vanish, so that

1-28 =

(1)

700, 1) =0 (12)

For 7.. we assume a stress arising from a unit force acting uni-
formly over a disk of radius «; then

7.00, 1) = —(1/wa®)H(s)
F..00,1) =0

r<aua (13)

r> o

where H(s) is the Laplace transform domain representation of
the time history of the applied load. Since we are interested in
the impulse response of the system, we take

H(_\-) = | (14}

This equation follows from the fact that the inverse Laplace
transform of a constant is equal to a Dirac function that is the
required time domain form of the applied load. In £ space the
stresses on z = 0 then have the representations

7..(0, &) = —(1/2m){2[/i(¢a)/Eal}
70,8 = 0

(15)

In the limit as & — 0, the disk load becomes a Dirac function in
the space domain. This relationship can be seen from the fact
that in this limit, 2J,(fa)/éa — 1, and 7,, — —1/2m, which is
the transform of the Dirac function in cylindrical coordinates.

Boundary conditions (15) coupled with the requirement that
both displacements and stresses must vanish in the limit z —

e enable solutions of the simultaneous set of equations to be
constructed. Obtained in this way, the transformed dis-
placements are

U g [ ]
wz & [/ ~ & -

: e
% 4ar
4 L/ + &
These displacements can be inverted by using (10) to give the
fundamental solutions for the Laplace-transformed dis-
placements caused by a unit normal point force on the surface
of a homogeneous viscoelastic hall space.

1 (cr 2 )
u = [ty
dwuR \n R an
R 1 ( z ot mﬂz)
i s B 2
4R R R*/ |
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where R* = r* + 2% If in (17) we take the limit 5 — oo, the
parameters u, o, and n assume their elastic equivalents, as can
be seen by inspection of (7). In this limit, (17) is just
Boussinesq’s solution (see the paper by Farrell [1972] for a
more complete discussion of the elastic problem).

b. Laplace inverse of the elastic solution—Maxwell half
space. Solutions (17) are the required s dependent solutions
to the equivalent elastic problem. According to the cor-
respondence principle these solutions are to be considered
Laplace transform domain representations of the fuli time
dependent solutions. Explicit use of (7) in (17) gives the follow-
ing expression for @(0, r):

_ [_J_][L
- dr | L uts)
s+ u/v

|t f|stup :|
[ 47!'-"][ s +()\+,u)5+,uK/v (18)

This simple algebraic s spectrum can be inverted to give the ex-
act time dependent solution for « (similarly, for v) as

+ ) + ,u(S)]:I

u(0, r) = j; i(0, e’ ds (19)

where L is the Bromwich path. Thus

w0, r) = l:—l—] [i s + L cc‘”’] (20)
dar | Lun v

where
T = [uK/vm]™!
¢ = (w/m)[l — (K/n)]

Equation (20) is the impulse response, or space-time Green
function, for the vertical displacement of the surface of a
homogeneous half space. The first term in (20) is the im-
mediate elastic response of the system to the delta function
load applied at + = 0. Its amplitude is just that obtained by
Boussinesq. In the expression for the purely elastic solution
((17) in the limit s — =) the 4(1) dependence is always implicit,
since by definition a simple elastic medium adjusts instan-
taneously to an applied load if inertial forces are negligible. If
inertial forces are not neglected, an elastic medium can of
course support wave motions, in which case its “adjustment’ to
the applied impulse takes an infinite length of time unless the
system has finite Q (nonzero damping).

The second term in (20) is in a sense nonphysical; for sup-
pose that we were to employ the Green function (20) to
calculate the response of the half space to a point-step input
(i.e., a constant point load applied at the origin at t = 0 and
maintained). Convolution of the Green function with this load
produces from the second term a term that grows linearly with
t. Clearly, this is not an appropriate description of the
response of the real earth, since the theory is correct only for
infinitesimal strains. The source of this difficulty is to be found
in the fact that we have lailed to include gravitational restoring
forces in the model. A full treatment of the physics including
this effect will predict a steady (i.e., time independent) final
state in which the gravitational and hydrodynamic forces are
exactly in equilibrium. The mechanism by which this final state
is attained is through gravitationally driven viscous flow in the
hall space—a transient convection produced by the loading.
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This final state is the state of so-called isostatic equilibrium, to
which we shall return for further discussion in section 10.
The last term in (20) describes the relaxation of the non-
elastic part of the initial vertical surface deformation at a point
caused by the applied impulse. For the homogeneous hall

space the decay constant 7 is independent of the wavelength of

the deformation. The magnitude of the amplitude parameter ¢
is also independent of wavelength and measures the amount of
vertical deflection that the surface will undergo (at position r)
before equilibrium is attained. In the present example, in
which gravitational forces have been neglected, there is of
course no such equilibrium position possible.

For times that are sufficiently short after the initial applica-
tion of a load the gravitational forces in the viscoelastic
medium will still be negligible. For times sufficiently long after
loading this is no longer a valid assumption. This can be seen
by direct inspection of the operational compliances u(s) and
A(s) defined in (7). For large s, which corresponds to small ¢,
u(s) — mp, Ms) — A, and the Laplace transform domain
solutions are exactly the elastic solutions discussed previously.
The same limit is obtained by taking v — < In the limits — 0
(t — =) the medium assumes the character of a Newlonian
viscous fluid, and gravitational forces exert a dominant in-
fluence. This limiting behavior will be effectively obtained on a
time scale that is proportional to ». In the next section this
regime is directly examined by neglecting elastic effects ab in-
itio. In general, there will exist a ‘transition time’ for the
response within which the elastic and viscous forces have com-
parable magnitudes (see section 8b).

5. DARWIN'S PROBLEM

Boussinesq’s problem was employed above in illustrating
the analysis of a simple viscoelastic problem using the corre-
spondence principle. In this section Darwin’s [1879] problem is
similarly employed to introduce the concept of a ‘decay spec-
trum’ in describing the viscous relaxation of a small-amplitude
deformation of the surface of a sphere. Explicit use is made of
this concept in discussing the results of section 8.

Here we neglect the elastic forces entirely and make use of
the stress-strain relation for a Newtonian viscous fluid to
describe the deformation of a homogeneous spherical earth
model. The equations of the model are the Navier-Stokes
equations, the equation of continuity, and Poisson’s equation.
When it is assumed that the viscosity is uniform, the density is
constant, and the medium is incompressible, then

vV — V, + pVe =0
Vsu=20
Vi = —4nGp

(21)

where u is now the fluid velocity (not the parcel displacement,
as is true in (8)), p is the mean normal stress (pressure), p is the
density, ¢ is the gravitational potential, and G is the universal
gravitational constant. Note that the coefficient » in the
hydrodynamic equations (21) represents the molecular
viscosity. This is in accord with the usage of section 4 but is
contrary to the custom in the hydrodynamics literature, where
v is reserved for the kinematic viscosity. If g is the surface
gravitational acceleration, then g = (4/3)wapG, and (21) may be
nondimensionalized by the substitutions u = (ga)"*u’, ¢ =
gae', T = ar', p = gapm, and t = (a/g)"*t". (This section is
similar to Parsons’ [1972] review of Darwin’s work but has
been modified to conform more closely to the general discus-
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sion in section 6.) When the primes are dropped, (21) becomes

Vi + FV(e — ) =0

(22a)
Veu=20
2 e
Vie= —3 r<1 (22b)
Vi =0 r> 1

where F = pa(ga)"*/v is a nondimensional parameter. Con-
sider that the fluid sphere has been distorted from perfect
sphericity by gravitational interaction with a point mass load
on its surface. By symmetry the distortion in shape will depend
only upon the angular distance from the applied load. If R is
the radius after such deformation, then

1+ Z z,P.(cos 6)

n=1)

R=1ds= @3)

where z' << 1 is the deformation. The solution for the poten-
tial inside is

¢ =33 = R)+ 2 ¢.'R'Picos )  (24)
n=0
and the solution for ¢ outside is
¢ =%+ 2 eRPilcos 0) 25)
f=1)

Now ¢ and V¢ must be continuous across the deformed sur-
face. When only first-order terms are kept in accord with the
assumption z' << 1, there is the well-known result

Gonl = Gon,o = [3/(2n 2 l}]zn [26}

The u is represented in terms of vector spherical harmonics
as

@

a= ) (U,,(r)Pn(cos 0)é, + Va(r)

n=0

dP,(cos 6) )
a8 &y (27)

Substituting (27) into V +u = 0 leads to
(1/R)y é/8R (R*U,) = nin + 1)V, (28)

Taking the divergence of the momentum equation in (28) by
using V-u = 0 gives
Ve —7) =0 (29)

Thus

¢ —m =14 2 c,R"P.(cos 6)

n=0

(30)

When (30) is substituted into (22), the radial part of the
momentum equation is

2
aizz (R*U,) — n(n + DU, = — Fe,nR"""

(31)
A particular solution of the inhomogeneous equation (31) that
is regular at the origin is

Up = baR"™' = [FeanR™ ' /2(2n + 3)] (32)

The coefficients b, and ¢, are to be determined from the sur-
face boundary conditions. The condition that the tangential

stress must vanish on the deformed surface leads to
b, = Fean¥(n + 2)/2Q2n + 3)n + 1)n — 1) . (33)

The boundary condition on the normal component of the
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stress is that it should balance the surface load. In the present
example the gravitational effect of the load is neglected.
However, in the general viscoelastic problem discussed in the
next section this effect will also be included. Since the potential
on the deformed surface of the sphere is

¢R=1+4z2)= 14 X ¢.Pufcos )  (34)
n=>0
where
en = |=2(n — 1)/(2n + 1))z, (35)

Thus from (30)
(36)

En T Tp = Cn

where the 7, are the coefficients in the spherical harmonic ex-
pansion of the pressure field = on the deformed surface. If the
L., are the coefficients in the spherical harmonic expansion of
the load, then the boundary condition on normal stress gives

—L, = —m, + (2/FM8U,/éR) R =1 (37)
which when (33), (34), and (36) are used, gives
2 — 1) @n* + 4n 4+ 3)
7T te (2n + 3)(n + 1) (38)

Since the time derivative of the radial displacement must equal
the radial component of velocity, then dz,/dt = (U,)n-, and

from (38),
dz, Fn(2n + 1)

dt  2(n — D@2n" + 4n + 3)

(n—1)
2n+1)
The case of free decay corresponds to L, = 0 (r > 0 for delta
function mass application), so that

; [—L,,m - z,,m] (39)

dzn/dt = —|Fn/(2n* + 4n + 3)]z, (40)
or
z, = z4(0) exp (—t/74) (41)
where
7o = (20 + 4n + 3)/Fn (42)

Equation (41) is an important result that will help in under-
standing the solutions for the viscoelastic problems discussed
in section 8. It states that each spherical harmonic component
of the surface deformation of a sphere of uniform viscosity will
decay exponentially with a decay constant that depends only
upon the harmonic degree of the component (ie., its
wavelength).

In general, the solution of (39) may be written as

z,(t) = z,(0) exp (—1t/1,)

! F.2n + 1)
0 2(n — 120" + 4n + 3)

«exp [=( — t')/r,] dt’

L")

(43)

(i.e., as a convolution of the load with the decay char-
acteristics of the viscous sphere). Given the decay char-
acteristics (decay spectrum) of the sphere, it is then possible to
synthesize the response to an arbitrary time variable load. If
the viscosity of the sphere and its density are not constant but
are variable in the radial direction, there is no reason to expect
that individual spherical harmonic components of the initial
deformation will continue to relax in a characteristically ex-
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ponential fashion. This assumption is often made nevertheless
[O'Connell, 1971]. The extent to which this assumption is in-
correct for realistic earth models is investigated in section §,
where in treating the viscoelastic problem the immediate
elastic response may be isolated from the elasticoviscous tran-
sition plus pure viscous response to provide a means ol com-
parison with the result (41). The result of this investigation is
the direct refutation of the assumption of exponential relaxa-
tion. Depending upon the magnitude of the mantle viscosity
the breakdown of this usual assumption may be traced either
to the presence of the core or to the strength of the
elasticoviscous transition. In either case the violation of the
assumption is most striking for the low-degree harmonics.

6. Mass LoAaDS ON A SPHERICALLY STRATIFIED
MAXWELL EARTH

In section 4 the correspondence principle was employed Lo
determine the response of a homogeneous viscoelastic hall
space to an applied point load. Here the same principle is used
to calculate the response of general, spherically stratified earth
models. In these calculations the gravitational effect of the
load is included. The appropriate equivalent elastic problem is
precisely that which must be solved in the calculation of elastic
load tides. In this problem, solutions are sought Lo the same set
of differential equations as are employed to describe body tides
or free oscillations except for the fact that in the latler
problem, inertial forces must be included. For these problems
the set of differential equations are of course subject to
different boundary conditions. A complete discussion of the
spherical elastic earth problem (the equivalent problem for the
viscoelastic analysis) is given by Longman [1962, 1963],
Takeuchi et al. [1962], and Kaula [1963). Only a briel sketch of
the necessary analysis is given here, and this sketch [ollows
Farrell's [1972] extension and review of Longman’s work.

a. Integration of the equations of motion. In the Laplace
transform domain the equations of motion consist of the
linearized equation of momentum conservation and Poisson’s
equation [Backus, 1967].

V7 —Vipglire)— pVe + gV (pl)e =0
(44)
Vi = —4nwGV - (pl)

Here p and g are the density and gravitational acceleration in
the static equilibrium state, u is the displacement vector, 7 is
the stress tensor, and ¢ is the gravitational potential; ¢ is the
sum of two parts ¢, and ¢,, which are, respectively, the pertur-
bation potential of the ambient gravitational field and the
potential of the externally applied gravitational force field (the
load). The tilde, which will be dropped hereafter, indicates that
the quantity is a function of the Laplace transform variable s.
The s dependence of (44) is contained in the form of 7 defined
in (6). If we restrict attention to spherically symmetric earth
models with a free outer surface and look [or Laplace
transform domain solutions for the deformation due to a point
mass, then (44) reduces to the spheroidal system of equations
in the three scalar variables u,, 1y, and ¢. When u and ¢ are ex-
panded in spherical vector harmonics as was done in section 5
and explicit use is made of the axial symmetry of the problem,
then

@

D

n=0

Il

u

(Un(r, $)Pu(cos B)e, + V.(r, ) P—{‘;‘-’;—@e)
43)

> @alr, 5)P.(cos )

n={l

]
Il
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Three additional dependent variables are introduced: the

radial and tangential components of the stress tensor, 7,, and

Trg, and a variable g related to the radial gradient of potential

and therefore to the ambient gravitational field as

(n+1)
r

F
=2+

= ¢ + 4rGpu,

(46)
These additional variables are also written in terms of their
Legendre transforms with coefficients T, ,,, Ty, and Q,. Equa-
tions (44) then reduce to the matrix equation

dY/dr = AY (47)

Where Y = (U, Vi, Trn, Tygn, ®n, Q,) and A is the s dependent
matrix given in the appendix; A reduces to the half-space limit
when p = 0 and r and n are large.

Subject to appropriate boundary conditions, (47) may be
solved by numerically integrating this set of six simultaneous
ordinary differential equations over the range r = Otor = a
(where as was true before, @ is the earth’s radius). Two
numerical schemes have been employed in constructing
solutions to (47). The primary technique was the Runge-
Kutta-Gill scheme [Shanks, 1966], with variable step size
[Backus and Gilbert, 1968]. Selected solutions in critical
regions were checked by using the ‘predictor-corrector’
method due to Hamming [Ralston and Wilf, 1960].

b. Boundary conditions. The numerical integration of
(47) is begun at some starting radius r,, below which it is
assumed that the physical parameters A, g, v, and p are in-
dependent of ». This depth, which in general is s dependent, is
determined by trial and error; r, is chosen sufficiently small
that further reduction leads to no change in the eigenlunction
structure of the solution. For a uniform sphere there are
analytic expressions for the linearly independent vectors Y.
which are finite at r,. In a solid there are three such vectors,
and in a fluid, two. These starting vectors, which are given by
Gilbert and Backus [1968), may be propagated to the surface
by either of the numerical integration schemes discussed
above, The final solution is that mix of the three linearly in-
dependent solutions that satisfies the boundary conditions at
the earth’s surface.

When the Legendre degree was sufficiently low that the start-
ing depth was in the core, then the core was assumed to have
zero Brunt-Viisidld frequency (see section 6¢). In fact, all
solutions were found to be insensitive to the details ol the core
model used.

The boundary conditions at the surface have been discussed
by Longman [1963] and more recently by Farrell [1972] for the
quasi-static loading of an elastic sphere. In the present case
great care must be taken with the surface boundary conditions,
since these conditions are being applied in the Laplace
transform domain. The time domain problem for which a
solution is here being sought is for the deformation of a
viscoelastic sphere when at ¢+ = 0 a point mass v is brought up
from infinity and instantaneously removed. We want to deter-
mine the time dependent shape and gravitational field of the
sphere for ¢ = 0. In order for the applied mass load Lo have the
required delta function behavior in the time domain the
boundary conditions in the Laplace transform domain must be
s independent (see section 4b). The linearized boundary con-
ditions are that 7,.(¢) = —gv6(f) (the normal stress balances
the applied load); 7,4(«) = 0 (the tangential stress is zero); and
¢ g, and (Ve, + 4rGpu) » €, are continuous, whereas e, * Ve,
must change by 4mwgy across r = a. For a point mass load
these conditions lead to

Tinla) = —g(2n + 1)/4na*

Tﬁ.n(a) =0

Onla) = —4xG(2n + 1)/4na*
As was stated above, these conditions are independent of s.
They determine U,(r, 5), Va(r, 5), and @,(r, 5) for the point
mass load in terms of which the Love numbers will be defined
in section 7.

c. Treatment of the core. In the fluid core, which we
assume to be inviscid, (44) reduces to a fourth-order system,
since u = 0 and the tangential components of the displacement
and stress can be eliminated. It was for a long time conven-
tional in circumstances such as those considered here, where
inertial forces are unimportant, to assume the so-called
Adams-Williamson condition [Lengman, 1963). This condi-
tion asserts that the density stratification in the core must be
adiabatic in order that a solution exist that satisfies the bound-
ary conditions. Smilie and Mansinha [1971] rejected this
postulate due to Longman by replacing the condition of
neutral stratification of the core by one allowing for a discon-
tinuous radial displacement at the core-mantie interface.
Dahlen [1974] has recently given an extensive discussion of this
point. Pekeris and Accad [1972] have also indicated the way in
which the Adams-Williamson condition is to be circumvented.
They determine solutions for the long-period bodily tides lor
core models having both stable and unstable as well as neutral
density stratifications. With stable stratification an infinite
number of core oscillations are found, as might have been ex-
pected from the outset, since under these conditions the
medium will support Rossby gravity waves, in which the
restoring force for parcel oscillations is a combination of
Coriolis and buoyancy effects. Unfortunately, Pekeris and Ac-
cad did not include the Coriolis force in their work, so that
their discussion of the low-frequency modes is incomplete.
These waves are precisely the ones whose excitation gives rise
to the thermal and gravitational tides in the earth’s at-
mosphere. The Brunt-Viiisili frequency of the core is a subject
of current contention [Higgins and Kennedy, 1971].

For the present purposes the question of the treatment of
the core at zero frequency is avoided by assuming that the core
is neutrally stratified.

d.  Harmonics of degree 0 and I. A load of the form P, is
uniformly distributed over the entire earth’s surface. Because
of the finite compressibility of the medium this load causes a
radial displacement that is accompanied neither by a tangen-
tial displacement nor by a perturbation in the gravitational
potential. When n = 0, (47) reduces to a second-order system
in Uy and T, , that has been given by Longnzan [1963]. Here of
course the solutions are s dependent on account of (7). Since
the glacial load (consisting of ice plus meltwater) conserves
mass, the n = 0 coefficient of its Legendre decomposition must
vanish identically. This does not mean that the U, term can be
neglected in the Green function.

Displacements of degree 1 have normally been ignored,
since they are accompanied by a shift in the center of mass of
the earth. Cathles [1971] has observed that this is not correct
for surface loading problems. Although it is true that the
center of mass of the earth plus load is fixed in space, there is
no constraint on the earth alone. Farrell [1972] has described a
method of integrating the differential equations under this
constraint when # = 1. It need not be described [urther here.

(48)

7. VISCOELASTIC EARTH MODELS

In the following sections several computations will be dis-
cussed in illustration of the effect of variations in viscoelastic
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structure on the response characteristics of the earth. Three
such structures will be considered. These structures are all sell-
gravitating Maxwell models and so require the specification ol
v as well as g, A, and p as functions of depth. In each model the
Lamé constants p and A as well as the density p are taken to
have the variations appropriate to the Gutenburg-Bullen model
A earth, as described, for instance, by Alterman et al. [1961].
The three models analyzed then differ only in their dependence
upon the effective Newtonian viscosity » and are chosen Lo il-
lustrate the extreme variations of this quantity, which have at
times been suggested as being reasonable (see the remarks in
section 1). These viscosity models are illustrated by Figure I.
Model | has a uniform viscosity of 10* P throughout the man-
tle. Model 2 has a 300-km-thick surficial low-viscosity zone
with a viscosity of 10 P; otherwise, the viscosity is everywhere
equal to that of model 1. Model 3 has a more viscous lower-
mantle viscosity of 10%* P from a depth of 1000 km to the core-
mantle boundary and an upper-mantle viscosity equal to that
of model 1. In all models the core is taken to be essentially in-
viscid.

It should be noted that no attempt has been made to include
the effect of the lithosphere in any of the models described
above. This region can be simulated by a surface layer ol high
viscosity with a thickness according to current orthodoxy that
is of the order of 100 km. Its presence will certainly alter the
Green functions in the region close to the point source. The
discussion of details like this will be left for future
publications.

8. Time DEPENDENT LOVE NUMBERS

In analogy with the problem of determining the static defor-
mation of an elastic sphere, dimensionless Love numbers Ay,
1., and k, are introduced into the viscoelastic problem. These
numbers are functions of three variables r, n, and 5. If U,, V,,
and ®,, arise from a force field with potential ¢, described
through its coefficients ¢, ,, these Love numbers are defined by
the following:

Un(r, s) ha(r, $)/g
Vir,s) | = @, LG, 5)/g (49)
@, .(r, 5) k(r, s)

where ®,, is independent of s, since the applied load is
assumed to have a delta function dependence in the time do-
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Fig. 1. Mantle viscosity models 1-3, described in text.
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main. When attention is focused upon the solutions at r = a,
then ®,,(a) = ag/m. [Longman, 1963], where g is the
gravitational acceleration at the earth’s surface and m, is the
earth’s mass. The time dependence of the displacements u and
the potential perturbation ¢, is contained in the time
dependence of the Love numbers. In the limit of large n and
small # the solutions of the spherical problem tend to the
solutions for the half space (Boussinesq's problem, discussed
in section 4). This equivalence leads to the asymptotic relations

he —a/u
gm,
= S 1 0
nl, 41ra2n (50)
nk, 301/ 2(p)u

which are correct to order 1/n. In (50) the parameters 7, ¢, and
u have values equal to those for the top layer of the spherical
earth models, and (p) is the earth’s mean density. These asymp-
totic results were discussed in detail by Farrell [1972].

a. Love number s spectra and their inversion. Given the
Love numbers defined in (49) and computed according to the
methods discussed in section 6, the deformation of the sphere
may be obtained in the space and time domains. The transfor-
mation from wave number (n) space to  space is accomplished
by summing the infinite series in (45). The transformation
from the Laplace transform domain to the time domain is
achieved by evaluating the inversion integral (19). In the pres-
ent problem it matters very much which of the inversions is
performed first. If the Legendre transform is evaluated before
the Laplace transform, then the subsequent Laplace inversion
is very difficult if not impossible to determine. Accordingly, we
begin the discussion of numerical results and interpretation
with the inversion of the Love number s spectra. The time
dependent Love numbers are closely connected to the decay
characteristics of the viscous sphere discussed in section 5
(Darwin’s problem), as will be seen shortly. The discussion is
restricted to the h, and k, Love numbers, since only these
numbers are required in calculating the Green functions (see
section 9) with which we are presently concerned.

The s spectra of Love numbers h, and k, are illustrated in
Figures 2 and 3 for model | at selected values of n. The corre-
sponding spectra for models 2 and 3 are included in Figure
11 (a-d). The shapes of these spectra are characteristic of those
for a general relaxation process. The dynamic range ol the
spectrum for degree n is of the order of n, as could have been
anticipated, and each is characterized by asymptotic regimes
for sufficiently small and sufficiently large s.

These asymptotic regimes have direct physical interpre-
tations. For large s, which corresponds to small t, the s
dependent Love numbers approach their values for the purely
elastic Gutenburg-Bullen A earth model. These large s Love
numbers are precisely those computed earlier by Kaula [1963],
Kuo [1969], and Farrell [1972]. The existence of the asymptotic
regime for small s, which corresponds to large 1, is connected
with the existence of the state of isostatic equilibrium. Inspec-
tion of these spectra and application of the final value theorem
for a Laplace transform, which states that

lim F(r) = lim s- L[ F(r)]

=0

a—0

for arbitrary F(r), indicate that as t — =, both h,(r) and k(1)
tend to zero. This is simply mathematical confirmation of the
anticipated result that for times sufficiently long after applica-
tion of the point mass the earth returns to its initial (1 < 0)
state of zero deformation. For this problem the state of
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Fig. 2. Love number s spectra for viscosity model 1 (h,). The cor-
responding value of n is marked beside each curve. Note the asymp-

totes for large and small 5, which correspond to the elastic and
isostatic limits, respectively.

isostatic equilibrium is the state of zero deformation. In
general, this state is simply one in which a gravitational
equilibrium exists between the deformed earth and a mass load
on its surface (see section 10).

To facilitate the inversion of these s spectra into the time do-
main, it is convenient to write the &, and k, Love numbers in
the form

h(s) = h'(s) + h”
ka(s) = k. (s) + k."

(51)

where h,F and k,F are the constant large s asymptotes of each
spectrum. When the Laplace inverse of (51) as specified by (19)
is taken, then

h(t) = LR, ()] + h,"8(0)

52
k() = L'k ()] + k. 8(t) ¢

Equations (52) emphasize that the large s asymptotes of the
spectra in Figures 2 and 3 determine the immediate elastic
response of the system. The weights 4,F and k,* are precisely
the surface mass load Love numbers that have been calculated
for the elastic problem by previous authors. Equations (52) are
analogs to (20) for the half-space problem. Both equations
consist of an immediate elastic part plus a part containing the
elasticoviscous transition and the long-term viscous behavior.
In the spherical problem the latter part of the response is con-
tained in the first term on the right-hand side of (52). It is to
the inversion of this part of the s spectrum that we now turn.

The difficulty with these inversions arose from the fact that
the h,Y(s) and k,"(s) are known only numerically (i.e., with
restricted accuracy) and for a limited number of real s values.
The technique that we employ here to approximate the func-
tions A,Y(1) and k,"(1) is essentially the collocation technique
described by Schapery [1962]. Under rather general assump-
tions Schapery [1962] has shown that the transient part ol a
viscoelastic response may be approximated by a Dirichlet
series. I A(s) is any one of the Love number s spectra, we
assume that an exact inverse solution #(z) exists in the form
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6(r) = 2. a; exp (—t/7,) (53)

i=1

The motivation for choosing this form of an approximate
solution is particularly apparent for the present problem, since
we know that if the sphere had uniform density and viscosity,
then the decay of each of the harmonic constituents of its
deformation would decay as a pure exponential. Although we
anticipate that the presence of the core and the intrinsically
viscoelastic nature of the medium will result in deviations from
pure exponential relaxation, we nevertheless expect that it will
be possible to approximate the time history of each harmonic
by a characteristic distribution function of relaxation times. In
(53) the coefficients a;, i = 1, m, are in fact a discrete ap-
proximation to such a distribution function.

To determine the ¢, and 7, in (53), we minimize the mean
square error between #(t) and an approximation to (1) that we
call f« (1), where

6% (1) = D b exp (—t/ay)

=1

(54)

The mean square error between #(r) and fx (1) is

E} = f [8¢e) — 6 * (O1° dt (55)

We assume that the o, are fixed such that 1/a; = s, where the
5, are the values of 5 at which we have computed the spectral
amplitude. The b; of the approximate solution (54) may then
be determined by minimizing E* in (55) with respect to the b; as

g_;:? - f: 2[6(r) — 6 * (] exp (;—r) dt =0 (56)

Thus

f 8(1) exp (;—‘) dt = f " g (;—’) it (57)

in order for the mean square error of the approximation to be
a minimum, and thus the Laplace transform of the approxima-
tion must equal the Laplace transform of the exact solution at

LOG g lnk,)

-5 -4 3 2 i o i 2 3

T T

LOG oS!

Fig. 3. Love number s spectra for viscosity model | (nk,). Note the in-
tersection of the small n spectra at intermediate s values.
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least at the m points s = /e, I = 1, m, or
rq(<5‘}ls--l-'|:1f = = [5” s=lle (58)
implving that
m b-
BS e=1tai — : / 1
()| Y ; [5 + ]."’lfai] =1/
=X (59)

[],-’far + 1.";0:1']

a result that follows from the fact that L(e ®) = 1/(s — a).
Equation (59) may be written in matrix form as

i=1

8 = myb; (60)

where m; = aya;/(a, — a;). Given the b; obtained by solving
the set of simultaneous equations (60), these may be employved
in the Dirichlet series (54) to approximate the time history 6(z).
The sequence b; may be thought of as a discrete approximation
to the distribution function of relaxation times as mentioned
above. In practice, stable time histories may be obtained from
samples of the s spectra taken twice per decade in 5 and con-
fined to the portions of the curves in Figures 2 and 3 wherein
the greatest rates of change of spectral amplitude are located:.
The linear algebraic svstem (60) is solved for the b; by using
standard techniques.

b.  Love number time histories. 1n Figures 4, 5, and 6, ex-
amples of time dependent Love numbers A, are shown for
models 1, 2, and 3, respectively. The corresponding curves for
the k, are included in Figure 12(a-c). These curves were ob-
tained from their corresponding s spectra by using the colloca-
tion technique discussed in section 8a above. All plots are log
linear to emphasize that most of the large n Love numbers do
decay exponentially (at least for sufficiently large 1) for all
three models. There are several important characteristics of
these decay spectra to which attention should be drawn.

The first fact that should be recognized is that these time
histories are for free decay. There is no load on the surface for
t > 0. The intercepts of the curves for r = 0 correspond to the
coefficients of the Legendre expansion of the anelastic part of
the deformation after the immediate elastic response and
recovery have taken place. This anelastic deformation

£
e
o
o
=]
TIME (K-YEARS)
Fig. 4. Time dependent Love numbers i, for model 1. The plot is

log linear. Note the strongly nonexponential stvle of relaxation of the
low-order Love numbers and the extremely slow exponential style of
decay of the n = 10,000 Love number.
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Y
TIME (K-YEARS)

Fig. 5. Time dependent Love numbers A, for model 2. Note the
much faster rate of decay of the intermediate-order Love numbers
(e.g., # = 100) than for model | (Figure 4). This is the effect of the low-
viscosily zone,

1C.00

proceeds to decay, partly by a mixture of elastic and viscous
effects (elasticoviscous transition) and partly through the es-
tablishment of a transient viscous convection in the planetary
interior. The viscous flow mechanism increasingly dominates
the response at greater times after load removal. Only the
decay curves for model 3 clearly exhibit the first stage of the
decay process. in which the transition from elastic to viscous
response occurs. Here there is an initial time interval with a
duration much less than 1000 vears during which the response
is anomalously fast in comparison with the rate of decay in the
later stages of adjustment. This is the elasticoviscous transi-
tion. The duration of this stage depends upon the relative
magnitudes of the elastic and viscous parameters. When the
elastic parameters are kept fixed, increases of viscosity result in
increased duration of the transition region. This explains why
the transition is more obvious in the response of model 3, since
for this model the viscosity of the lower two thirds of the man-
tle is increased by a factor of 102 over its value in models 1 and
2. The separation (51) of Love numbers into viscous and
elastic parts is therefore not a complete separation. The
viscous part still contains a remnant elastic influence.

A second fact that should be recognized is clear on inspec-
tion of the decay curves for small degree in models 1 and 2.
These small-degree deformation coefficients decay in a
strikingly nonexponential manner. This is an important point,
since it has often been assumed in analogy with Darwin's
problem (section 5) that all harmonics will decay in a
characteristically exponential fashion. For instance, Q' Connell
[1971] makes direct use of this assumption for the decay of
degree 2 to construct an argument using data on the nontidal
acceleration of the earth’s rotation that allows him to estimate
the viscosity of the lower mantle. Since his assumption was in-
correct, his derived viscosity is certainly incorrect also. Deter-
mination of the size of the error will involve use of the accurate
calculations given herein, The reason for the strongly nonex-
ponential style of decay of the low-degree harmonics is of
course the presence of the core. Successively higher degree har-
monics are less influenced by its presence and so tend to
behave analogously to the prediction of Darwin’s problem.
For model 3 the situation is somewhat different. Because of the
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Fig. 6. Time dependent Love numbers 4, for model 3. Note the
much slower rate of decay of the low-order Love numbers than for
models | and 2. This is the effect of the hard lower mantle.

viscous lower mantle in this model, even the lowest-degree
spherical harmonics are not noticeably affected by the pres-
ence of the core. The transient convection is confined to the
upper-mantle region. Nevertheless, the low-degree harmonics
in the decay spectrum for this model have a strongly nonex-
ponential decay history for the first few hundred years after
removal of the load. This is just the time interval over which
the transition from elastic to viscous behavior is taking place
(as was discussed above). After the transition has been
completed, the decay of all harmonics is essentially exponen-
tial for this model, and the analogy with Darwin's problem
is correct.

The discussion of the last paragraphs can be summarized as
follows: in real earth models, individual spherical harmonic
components of a surface deformation may exhibit a nonex-
ponential free decay time history for two main reasons. If the
viscosity of the mantle is sufficiently low, then all low-degree
harmonics will “see’ the core and will decay nonexponentially.
On the other hand, if the viscosity of the mantle is sufficiently
high, then the elasticoviscous transition will be strong and will
lead again to a nonexponential style of decay immediately
following removal of the load.

A third point that should be made here concerns the infor-
mation distribution as a function of wave number, which is
contained in the Love number time histories. The eigenfunc-
tions associated with individual Love numbers have their
energies concentrated in progressively shallower depths as the
degree increases. The fact that only the lowest-degree Love
numbers are at all affected by the lower mantle and core is
revealed in the way that the starting depth varies as a function
of n for the numerical integration of (47). Information on the
shallow structure of the model is contained in the decay curves
of high degree, and information on the deep structure of the
model, in the decay curves of low degree. For example, the
low-viscosity zone in model 2 results in an increased decay rate
for the high degrees but in only a weak effect for the low
degrees. The viscous lower mantle in model 3 leads to a strik-
. ing reduction in the rates of decay of the low degrees but has
only a slight effect on the high degrees.

Degrees 0 and |, which are not shown clearly on these time
histories (degree 1 is just visible), both show time domain
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behavior that is delta function-like. Their amplitudes decrease
very quickly after removal of the load.

9. Space-TiIME GREEN FUNCTIONS

a. General discussion. 1mpulse response, or Green, func-
tions are obtained for the surface mass load boundary value
problem by summing infinite series of the form of (45). By
means of (45), (49), and (52) the radial displacement can be
written as

&SN V@) + kS0P, (cos 6)

My n=n

u (8, 1) = (61)
Similar expressions can be obtained for the perturbation in the
gravitational field and for the deflection of the vertical. In both
of these effects, which are referred to as the gravity anomaly
and the tilt, the direct attraction of the mass load is important.
There are also horizontal and vertical accelerations from the
perturbed density field proportional to the Love number k,. A
third contribution to the gravitational perturbation is the
change in acceleration produced by moving through the
gradient in the unperturbed gravity field. The tilt is also in-
fluenced by a third effect due to the tilt of the deformed bound-
ary. Combining all of these effects, Longman [1963] obtains ex-
pressions that have the following viscoelastic counterparts:

(0, £) = = 3 (nd(r) + 2[n, (1) + h."5(1)]

M, o

— (n + DI&"() + k53D Po(cos ) (62a)
(0, 1) = = 3 (30 + () + k"5(0))
v E dP,(cos )
— ') + k70O =727 (62b)

which depend only upon h, and k,. The physical fields u,, g,
and (' defined above are the parameters that are capable of
measurement geologically, and they are therefore the only
parameters necessary for comparison of the theory with ob-
servation. (A further useful field is the potential perturbation
¢, defined as ¢(0, 1) = (ag/m )Xol + kn — hy)Pa(cos 6). It
will be discussed elsewhere.)

Each of these expressions may be split into an elastic and a
viscous part. For instance, (60) becomes

[: }“jc h.EP,(cos 9)] 3(1)

u (0, 1)

+ — f h," (£)P.(cos 6)

a
M, n=o

u,"(0)8(1) + u,."(8, 1) (63)

The part with time dependence 6(7) is just the elastic Green
function calculated by Farrell [1972]. It will not be discussed
further here. The viscous parts of the impulse response func-
tions for radial displacement, gravity anomaly, and tilt are
then

I

w, (0, ) = —— 3 h"()P.(cos )

e n=0

(64)

(0,0 =5 3 207() — (n + Dk (D)P.(cos )]
e n=i) (65)

PO =—m X (kn"m A “(cﬂ—’) (66)

Te ne=() 68
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Several tricks can be employed to sum these series, which as

they stand, are very slowly converging. Inspection of any of

the Love number time histories discussed in section 8 (Figures
4-6) indicates that for fixed r (time) there exists a collection
point toward which as n increases, each of the Love numbers
tends. This is to be expected physically, since the decay rale be-
comes infinitely slow as n — ., When these limiting values ol
the Love numbers are denoted by A.V (1) and k.Y (1), the sums
(65)-(66) are further separated with the substitutions

R (1) = [h,' (1) — ha" (D] + h."(0)

(67)
k(1) = [k, (1) — k" (O] + ko' ()
When (67) is substituted into (64), then
i . O
U (0 1) = o sin (0/2)
+ 2 3 70 — h"()IPucos 6)  (68)

e n=0

since ¥, .9 Pr(cos #) = V2 sin (8/2). The remaining infinite sum
in (68) will terminate after somen = N, since as was mentioned
above, h,Y (1) — h..V(1) as n — o, This is called Kummers’ trans-
formation, Two further alterations are necessary in order Lo
put the infinite series into a readily summable form. The first is
to include a disk factor in the kernel of the sums like (68), so
that the point mass is approximated by a mass that is spread
over a small but finite area. This effectively clips the am-
plitude of the large n terms. The second further alteration is to
transform the infinite sums by means of the Euler trans-
formation [Hildebrand, 1956] into alternating series. The nu-
merical application of this transformation to series like (68) is
facilitated by the van Wijngaarden algorithm. These problems
have been discussed by Farrell [1972] within the context of the
elastic problem. Solution of the viscoelastic problem through
the correspondence principle enables most of this formalism to
be transplanted intact. The only essentially new numerical in-
gredient is a method of doing the inverse Laplace transforma-
tion to get the A,Y(1) and the k,Y(1) from the A,"(s) and the
k.Y (s). Such a method was discussed in section 8.
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Fig. 7. Viscous part of the Green function for radial displacement
in model 1. Time slices are at 1000-year intervals as shown. Note the
inward migration of the peripheral bulge and the fast relaxation of the
antipodal (f# = 180°) depression.
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Fig. 8. Viscous part of the Green function for radial displacement

in model 2. Time slices are at 1000-year intervals. Nole the complex
deformation of the peripheral bulge as it migrates inward.

b. Radial displacement, gravity anomaly, and tilt. The

. ‘viscous’ parts of the Green functions for radial displacement

in models 1-3 are shown in Figures 7-9. The corresponding
response functions for gravily anomaly are included in Figure
13{(a-c). At near and intermediate distances from the point of
application of the load (f = 0) the Love number A, dominates
the anelastic part of the gravity anomaly, so that except near
the antipode (# = 180°) this response function is similar to
radial displacement.

The displacement Green functions have been normalized Lo
the response

unorm{a) = (‘g0/4ﬂ'ﬁ??}(ﬂ3) (69)

which from (17) is seen to be just that of a homogeneous elastic
earth model with R = (af)). The parameters a, n, and p are
taken as those appropriate to the uppermost layer in the
stratification. On the other hand, the Green function for
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Fig. 9. Viscous part of the Green function for radial displacement
in model 3. Time slices are at 1000-year intervals. Note the stationary
nature of the collapsing peripheral bulge and the absence of relaxation
at the antipode.
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Fig. 10. Fixed # slices through the Green function for radial dis-
placement of model 1 (Figure 7). Note the existence of a range of 4,
wherein the vertical motion is not monotonic owing to the migration
of the peripheral bulge.

gravity anomaly is normalized with respect to the direct at-
traction of the mass load. This is just the part

I

gnorm(a) £ i ?IPn(COS I?)

M 5t

— £
" 4m, sin (6/2) 70
of the infinite series (61). The normalizations are the same as
those employed by Farrell [1972] and are convenient for the
viscous as well as the elastic part of the Green functions. The
normalized Green functions for the elastic and anelastic parts
of the response are thus amenable to direct intracomparison.

Figures 7, 8, and 9 illustrate the w,” (8, 1) functions for a suc-
cession of times spaced at 1000-year intervals in the decay
histories of models 1, 2, and 3, respectively. Foremost among
the several noteworthy features of these response functions is
the clear presence in all cases of a peripheral bulge at inter-
mediate distances from the point of application of the load.
Near the load the surface of the earth is inevitably depressed
below its equilibrium level. Further away from the load is a
region that has been uplifted above this equilibrium level. At
still greater distances the deformation is strongly model de-
pendent and may have either an antipodal depression as there
is in model 1 or an antipodal elevation as there is in model 3.

This determination of the structure of the region of uplift
surrounding the central depression and of its time history for
an impulsively applied point mass load is among the most in-
teresting results to emerge from the present initial study. The
concept of this forebulge region was introduced by Jamieson
[1882] and has been discussed by Daly [1920], Walcott [1970],
and other authors. In the viscoelastic problems under analysis
here the peripheral bulge is shown to be almost entirely due to
anelastic effects, it having only an extremely modest ex-
pression in the elastic part of the Green function [Farrell,
1972].

Although the existence of the bulge is independent of the
viscosity model, its position in space and its evolution in time
certainly are not. The Green functions indicate precisely how
strongly dependent upon the viscosity structure are the styles
of relaxation at intermediate and long range. The styles of de-
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cay of the peripheral bulge for models 1-3 are strikingly dis-
similar. The most prominent features of the bulge are its width
in degrees, its nondimensional amplitude, and the location of
its amplitude maximum. Figure 7, which illustrates the decay
of the surface deformation for model I, in which the mantle
viscosity is uniform, has a bulge that migrates rapidly inward
as a function of time. As the bulge moves inward, its am-
plitude at first decreases rapidly but after 2000 years remains
nearly constant with a nondimensional amplitude of about +2
units. This inward migration is accompanied by a modest in-
crease in width.

The behavior of the forebulge in model 2 (Figure 8), which
has a 300-km-thick low-viscosity zone, is distinctly different
from that in model 1. In this case the 1 = 0 location of the
bulge is much closer to the source than was the case for model
1. Although the inward migration of the bulge is still a domi-
nant characteristic of the response, the rate of inward migra-
tion is reduced from that for model 1. In addition, the am-
plitude of the bulge first decreases, as was true previously, but
later increases again rather rapidly. This whole process is ac-
companied by a marked increase in the width of the forebulge
as the decay proceeds. Physically, these processes may be
partly understood on the basis of the tendency of the low-vis-
cosity zone to force adjustment to proceed by flow essentially
confined to a channel. Of course, such confinement is easier to
achieve for the short-wavelength than for the long-wavelength
components of the original deformation. Since the long wave-
lengths decay rather quickly for this model (see section 8), the
later times in the decay history are times when the ap-
proximation to a channel flow is most closely achieved.

For model 3 (Figure 9) the characteristics of the relaxation
process again differ markedly from those of either of the first
two models. For this model the high viscosity of the lower
2000 km of the mantle severely reduces the decay rates of the
lower-order harmonic components of the initial deformation
(see section 8). This reduction results in an antipodal deforma-
tion that is very nearly time independent, since for large 6 the
dominant terms in the infinite series (64) are those with small n.
This behavior of model 3 should be compared with the op-
posite behavior of models 1 and 2, for which the antipodal
deformation has essentially been erased within the first 1000
years after removal of the load. This immediately suggests that
if it were possible to obtain land emergence measurements in
the antipodal region of a Pleistocene deglaciation, then one
could interpret this information directly in terms of the vis-
cosity of the lower mantle. The implementation of this idea
will of course require careful attention to the ocean-filling part
of the global rebound convolutions. Aside from the near time
independence of the antipodal deformation the relaxation of
model 3 is characterized by the fact that its peripheral bulge
does not migrate. Although the initial forebulge is more than
twice as large as that for model 1, as time proceeds, this de-
formation of the surface simply collapses in situ with only
moderate change of width.

On the basis of the above discussion of the relaxation char-
acteristics of models 1-3 it should be clear that relaxation data
are eminently suited to the task of discriminating between
different mantle viscosity structures. This of course assumes
(as was made clear in the introduction) that the response
mechanism is essentially a viscous hydrodynamic one. The
main data set for the rebound problem (e.g., that of Walcott
[1972] for the Laurentide region) consists of time dependent
elevations as a function of position (referred of course Lo a par-
ticular and assumed known eustatic sea level curve). Near the
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Fig. 11. Love number 5 spectra for (a) model 2
center of maximum load, whether it is in Fennoscandia or in
Canada, these curves inevitably show that the land has betn
emerging since deglaciation. This is completely in accord with
the Green functions for radial displacement discussed above.
However, at greater range this simple picture of land
emergence since deglaciation is evidenced neither in the Green
functions nor in the observations. For instance, the uplilt
curves along the Atlantic seaboard of North America become
progressively more complicated along the profile from New-
foundland in the north to Florida in the south [Walcort, 1972].
The complex structure of these intermediate range response
curves is entirely understandable in terms of the radial dis-
placement Green functions. In these regions the response
history is strongly dependent upon the shape and migration
characteristics of the peripheral bulge. Figure 10 shows a series
of slices at fixed # through the radial displacement Green func-
tion for model 1. At sufficiently small angular separation from

the load the height of land increases monotonically for all ¢ <

15,000 years. At larger separations this behavior changes to
one in which the land first rises above and then sinks back to-
ward the equilibrium level (v, = 0). At still greater range the
height of land steadily decreases toward equilibrium.
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The tilt Green functions for the three earth models dis-
cussed here are included in Figure 14(a-c). These functions are
normalized with respect to the contribution from the direct at-
traction of the point mass load, which is just the first term on
the right-hand side of (62):

—1 & 4P, (cos 6)

m, ,.Z,o ae

1 8/2

iy OO (02 an
m, 4 sin” (6/2)

Again, this normalization is the same as that employed by

Farrell [1972] in his analysis of the elastic problem, and so the

elastic part- of the response discussed there is amenable to

direct comparison with the viscous part of the response dis-

cussed here.

r!!0!"!\(8J =

10. APPROACH TO ISOSTASY

In the preceding sections a discussion has been given of the
response of a spherically stratified Maxwell medium to an im-
pulsively applied point mass load. Although the time de-
pendent Love numbers obtained for "this problem and the
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Fig. 12, Time dependent Love numbers nk, for (a) model 1, (b)
model 2, and (¢) model 3.

Green functions derived from them were extremely useful in
describing the response characteristics of the sphere, there
remains an important property of the response that has yet to
be described. This property concerns that ability of the models
to pass smoothly from one equilibrium configuration to an-
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other in response to redistribution of the surface mass load. In
such equilibrium states the surface mass load is entirely sup-
ported by the Archimedes, or buoyancy, force, and such states
are termed states of isostatic equilibrium. A concise and clear
review of the subject of isostasy has been given by Garland
[1965]. The previous discussion of impulse response functions
was concerned with the way in which the earth’s shape was dis-
torted and the way in which this distortion was erased when a
surface point mass load was instantaneously applied and
removed at ¢ = 0. In this case the initial and final equilibrium
states are the same and are states of no distortion of the initial
spherical symmetry.

If the point mass had been allowed to remain on the surface
for all ¢+ = 0, the system consisting of earth model plus mass
load would have tended toward a new equilibrium con-
figuration as ¢ — «, The impulse response functions obtained
in the last section can be employed directly to determine the
characteristics of this new isostatic equilibrium configuration.
To determine, for instance, u,{(#) in going from the old to the
new equilibrium configuration simply requires convolution of
(60) with the Heaviside function H(t). The total response then
consists of two parts: a time independent (immediate) elastic
displacement with spherical harmonic coefficients ah,®/m, and
a time dependent part with spherical harmonic coefficients
equal to a/m, times the convolution of h,Y(1) with the
Heaviside function. In the limit ¢ —+ « the spherical harmonic
coeflicients of the latter part of the response tend to individual
constants, since for sufficiently large ¢ each of the h,"(t) de-
cays in an exponentiallike manner. This is obviously true lor
h,Y (1) approximated by Dirichlet series as was done in (54). As
t — @, the system tends to a new isostatic equilibrium. If the
point mass is now moved from one point on the surface to an-
other, the system will pass from this first equilibrium con-
figuration to another. Such a redistribution of surlace load is
precisely the mechanism that leads to the relaxation processes
observed to accompany deglaciation, The utility of the impulse

‘response functions in describing the approach to isostatic equi-

librium is thus clear.

It is useful to define a new set of isostatic Green [unctions
derived from the impulse response functions of the last sec-
tion by convolution with the Heaviside step function as dis-
cussed above and taking the limit ¢ — o, These functions are
useful in that at least one of their number may be subjected to
direct experimental measurement. This is the isostatic Green
function for gravity anomaly. The extraction of this function
from combined free air gravity anomaly and topographic data
from the United States has been discussed by Dorman and
Lewis [1970] and Lewis and Dorman [1970] without reference
to any particular compensation mechanism. The function was
later inverted [Dorman and Lewis, 1972] in conjunction with a
particular assumption regarding the compensation mechanism
to infer a radial dependence of density difference from a mean
upper-mantle value. This isostatic Green function provides an
additional constraint that any fluid model of the compensation
mechanism must be able to satisfy.

11. CONCLUSIONS

The main purpose of the work discussed here has been Lo
provide a new formalism with which to describe the
phenomenon of postglacial *uplift’ in the context of a fluid
(viscoelastic) model and in spherical geometry. The main ad-
vantage compared with previous treatments is obtained by
direct application of the correspondence principle. This al-
lows the description of the response in the Laplace transform
domain through the use of the familiar equations of elasticity.
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The time domain behavior is then obtained by approximate
Laplace inversion of a series of s spectra by using an extremal
technique.

There are several rather general problems that are amenable
to attack by using the methods developed here. Foremost
among these is the direct testing of the fluid models of the com-
pensation process in postglacial rebound. Given the time
dependent and space dependent Pleistocene surface loads
[Paterson, 1972], the Green functions derived in the previous
sections may be employed to compute the time dependence of
the changes produced in the earth’s shape and in its external
gravity field. This requires the evaluation of a space-time con-
volution integral. Both the viscous and the elastic parts of the
response are of course to be included in this calculation. The
computed response may then be compared with that which is
observed in order to determine a single mantle viscosity profile
of the model that is compatible with the observations. If it
does not prove possible to provide a coherent explanation of
all the observed data with such a model, then the model must
be suitably altered, perhaps to incorporate the phase transition
mechanism. All of this assumes that the Maxwell model of the
interior is an adequate one. If the viscosity of the mantle is not
Newtonian as Post and Griggs [1973] have suggested, then the
Maxwell model of the interior is inappropriate. It is doubtful
whether the postglacial uplift data are known with sufficient
accuracy to enable such a distinction to be made, but this
remains an open question.

If it is possible to find a single mantle viscosity profile that
allows the Maxwell model to fit all the observations within a
standard error, then the question of the uniqueness of this vis-
cosity profile becomes a meaningful one. This question can be
given a quantitative discussion by using the now widely em-
ployed technique developed by Backus and Gilbert [1967, 1968,
1970]. As might be expected, it turns out that the resolving
kernels for this inverse problem have a particularly con-
venient representation in the Laplace transform domain. This
fact makes the analysis of the rebound using the corre-
spondence principle a particularly attractive way to proceed. A
different approach to this problem was taken by Parsons
[1972] in a discussion of the inverse problem for viscosity of
the plane earth models employed by McConnell [1965]. The
method based upon the techniques discussed here attacks the
spherical problem without the necessity of making the usual
approximation that each wavelength in the deformation re-
laxes exponentially. This approximation has been shown to be
incorrect.

Given a viscosity model of known reliability, it will be possi-
ble to proceed toward the construction of iterative solutions to
the nonlinear inverse problem in which the load distribution,
as well as the mantle viscosity structure, is assumed indeter-
minate. When the viscosity model is fixed after one iteration,
the load can be varied to obtain better agreement with the fine
structure of the response. This process may be expected to
vield particularly useful results for the Canadian arctic region,
where the patterns of postglacial land emergence can be quite
complicated [Andrews, 1966, 1968a, b].

APPENDIX: EQUATIONS 0oF MOTION
In (47) the matrix A has the following elements:
Ay, = [—2\/Br, n(n + 1)/8,,1/8, 0, 0, 0]
Ayy = (—1/r, 1/r,0,1/u, 0,0)
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As; = [(4/D0/r = gopo)s Qx/r — pogo)n(n + /o,
—4u/Br, n(n + D/r, —po(n + 1)/r, pol
Asi = {(1/r)(pogo — 2v/0), (—1/7)
“[=nln + D@ + w) + 2u), =N/Br, —=3/r, po/r, 0}
Asi = [—rnGpy, 0, 0,0, —(n + 1)/r, 1]
A = [—(n + 4xGpo/r, n(n + 1)4xGpo/r,

0,0,0, (n+ 1)/r]

where v = w(3N + 2u)/(A + 2u), 8 = A + 2u, and A and g are
the s dependent forms given in (7).
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